..

న్యూక్లియర్ మెడిసిన్ & రేడియేషన్ థెరపీ

మాన్యుస్క్రిప్ట్ సమర్పించండి arrow_forward arrow_forward ..

Assessment of Brain Tumor Displacements after Skull-based Registration: A CT/MRI Fusion Study

Abstract

Qianyi Xu, George Hanna, Yongjun Zhai, Sucha Asbell, Jiajin Fan, Tamara LaCouture, Yan Chen, Leonard Kim and Gregory Kubicek

Purpose: To assess brain tumor displacements between skull based and soft-tissue based matching during CTMRI fusion for a total of 35 brain lesions.

Methods: Twenty-five patients who underwent CT and MRI scans in the same day were retrospectively recruited into the study. Semi-automatic skull based fusion was first performed and reviewed on a Treatment Planning System (TPS). A secondary fine-tuning of the fusion was then performed, if mismatch was observed in the tumor or neighboring soft-tissue, using nearby visible soft-tissue, such as gyri, sulci, and fissures. Two physicists fine-tuned the secondary fusion until the best match could be agreed upon. The resulting rotations and translations between the two fusions were recorded, which indicated local displacements between skull based and soft-tissue based matching. We further created a PTV by expanding a 2 mm margin around the GTV after skull-based fusion, and then evaluated the coverage of the GTV within the PTV after fine tuning with soft-tissue based fusion.

Results: In 29 of the 35 lesions, minor to no mismatch was found between the soft-tissue and skull based fusions. The corresponding translational and rotational shifts were 0.05 ± 0.63 mm (LR), 0.01 ± 0.79 mm (AP), 0.37 ± 1.01 mm (SI); -0.15 ± 0.67° (pitch), -0.19 ± 0.34° (yaw), and -0.12 ± 0.49° (roll). Thus the GTV, after soft-tissue based fusion, was 100% covered by the PTV. However, in the remaining 6 lesions in the study, noticeable displacements were observed between the skull and soft-tissue based fusions. Excluding an outlier lesion, the mean translational and rotational shifts for 5 of the 6 remaining lesions were 0.90 ± 2.15 mm (LR), 1.50 ± 2.27 mm (AP), -1.01 ± 1.83 mm (SI); -1.42 ± 3.12°(pitch), 0.02 ± 0.83°(yaw), and -0.17 ± 0.68°(roll). For the outlier lesion, the GTV was nearly missed by the PTV, and for the rest of the 5 lesions, the mean coverage of the GTV was 98.9% within the PTV.

Conclusion: In a small portion of lesions, our study showed noticeable brain tumor displacement with typical patient setup in CT and MRI scans when using skull based fusion in comparison with soft-tissue fusion. Careful review of the skull based fusion is recommended by examining the match with nearby soft-tissue and/or tumors. If fusion deviations are found, it is also recommended to consider adding a margin to the GTV to account for such variations, since such variations could potentially affect target localization accuracy at the time of treatment.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఈ కథనాన్ని భాగస్వామ్యం చేయండి

జర్నల్ ముఖ్యాంశాలు

ఇండెక్స్ చేయబడింది

arrow_upward arrow_upward