..

జర్నల్ ఆఫ్ అప్లైడ్ & కంప్యూటేషనల్ మ్యాథమెటిక్స్

మాన్యుస్క్రిప్ట్ సమర్పించండి arrow_forward arrow_forward ..

Fractal and Smooth Complexities in Electroencephalographic Processing

Abstract

Navascués MA, Sebastián MV and Valdizán JR

The importance of the electroencephalogram (EEG) rests upon the fact that it provides useful information of the normal and pathological brain functions. However, the relations among abnormal EEG, brain functions and disorders are not well known yet. We have proposed numerical quantifiers of the EEG signal, coming from the methodology of fractal mathematics and the theory of approximation. In the first part we describe an alternative to the computation of nonlinear dimensions for this kind of signals. The approach used here is based on a fractal interpolation of the data. In the second part, we describe a method for the computation of smooth complexities based on the interpolation of EEG signals by means of polynomial splines. This kind of functions is used to find quadrature formulas for the spectral moments. Both procedures are applied to treat the electroencephalographic discrimination of a group of children suffering from an Attention Deficit with Hyperactivity Disorder (ADHD).

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఈ కథనాన్ని భాగస్వామ్యం చేయండి

ఇండెక్స్ చేయబడింది

arrow_upward arrow_upward
a