..

జర్నల్ ఆఫ్ బయోడైవర్సిటీ, బయోప్రోస్పెక్టింగ్ అండ్ డెవలప్‌మెంట్

మాన్యుస్క్రిప్ట్ సమర్పించండి arrow_forward arrow_forward ..

Global Warming -2020: Extended Abstract Title: Optimization of Anaerobic Co-digestion of Multiple Feedstocks for Biomethane Recovery

Abstract

Anahita Rabii, Civil Engineering Department, Ryerson University, 350 Victoria St., Toronto, Ontario, Canada

Anaerobic co-digestion of organic waste has attracted attention as a promising technology for waste management and biogas recovery. Several parameters need to be considered for the proper operation of this technology including the feedstock selection and their ratios. This research was aimed to investigate the influence of mixing and lipids: proteins: carbohydrates ratios on biomethane production in anaerobic co-digestion of thickened waste activated sludge (TWAS), manure and source separated organics (SSO). The digestion reactors operated in batch mode under hemophilic condition. The results showed that the maximum methane yield was 356 mL CH4/g CODadded corresponding to TWAS: manure: SSO mixing ratio of 2:4:4 and lipids: proteins: carbohydrate ratio of 1: 3.5: 18.5. In comparison, 134, 299, and 332 mL CH4/g CODadded were obtained by mono digestion of TWAS, manure, and SSO. The trend of the methane yield variations in response to the COD: N and to the lipids: proteins ratios relatively conform to each other excluding some of the ratios. On the contrary, the methane yields demonstrated different responses to the ratios of lipids: carbohydrates and proteins: carbohydrates compared to COD: N ratios. Synergistic effect increased the methane yield by 19% in co-digestion of TWAS/manure/SSO.

Keywords: Biomethane Potential, Manure, Thickened Waste Activated Sludge, Mixture Ratio

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఈ కథనాన్ని భాగస్వామ్యం చేయండి

ఇండెక్స్ చేయబడింది

arrow_upward arrow_upward