..

జర్నల్ ఆఫ్ జెనరలైజ్డ్ లై థియరీ అండ్ అప్లికేషన్స్

మాన్యుస్క్రిప్ట్ సమర్పించండి arrow_forward arrow_forward ..

Modules Over Color Hom-Poisson Algebras

Abstract

Ibrahima Bakayoko

In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebras A extend to modules over the color Hom-Lie algebras L(A), where L(A) is the color Hom-Lie algebra associated to the color Hom-associative algebra A. Moreover, by twisting a color Hom-Poisson module structure map by a color Hom-Poisson algebra endomorphism, we get another one.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఈ కథనాన్ని భాగస్వామ్యం చేయండి

ఇండెక్స్ చేయబడింది

arrow_upward arrow_upward