..

ఇండస్ట్రియల్ ఇంజనీరింగ్ & మేనేజ్మెంట్

మాన్యుస్క్రిప్ట్ సమర్పించండి arrow_forward arrow_forward ..

Non-Gaussian Random Generators in Bacteria Foraging Algorithm for Multiobjective Optimization

Abstract

Ganesan T, Vasant P and Elamvazuthi I

Random generators or stochastic engines are a key component in the structure of metaheuristic algorithms. This work investigates the effects of non-Gaussian stochastic engines on the performance of metaheuristics when solving a real-world optimization problem. In this work, the bacteria foraging algorithm (BFA) was employed in tandem with four random generators (stochastic engines). The stochastic engines operate using the Weibull distribution, Gamma distribution, Gaussian distribution and a chaotic mechanism. The two non-Gaussian distributions are the Weibull and Gamma distributions. In this work, the approaches developed were implemented on the real-world multi-objective resin bonded sand mould problem. The Pareto frontiers obtained were benchmarked using two metrics; the hyper volume indicator (HVI) and the proposed Average Explorative Rate (AER) metric. Detail discussions from various perspectives on the effects of non-Gaussian random generators in metaheuristics are provided.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఈ కథనాన్ని భాగస్వామ్యం చేయండి

ఇండెక్స్ చేయబడింది

arrow_upward arrow_upward